

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Molecular Constants of the NbN Molecule

E. A. Pazyuk<sup>a</sup>; E. N. Moskvitina<sup>a</sup>; Yu. Ya. Kuzyakov<sup>a</sup>

<sup>a</sup> Department of Chemistry, Moscow M. Lomonosov State University, Moscow, USSR

**To cite this Article** Pazyuk, E. A. , Moskvitina, E. N. and Kuzyakov, Yu. Ya.(1986) 'Molecular Constants of the NbN Molecule', Spectroscopy Letters, 19: 6, 627 – 638

**To link to this Article: DOI:** 10.1080/00387018608069268

**URL:** <http://dx.doi.org/10.1080/00387018608069268>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MOLECULAR CONSTANTS OF THE NbN MOLECULE

Key words: intracavity laser spectroscopy,  
vibrational analysis, rotational analysis,  
triplet splitting, satellite components.

Pazyuk E.A., Moskvitina E.N., Kuzyakov Yu.Ya.

Department of Chemistry Moscow M.Lomonosov State  
University  
119899, Moscow, USSR

ABSTRACT

Absorption spectrum of NbN has been obtained in the 560-670 nm region by intracavity laser spectroscopy. Vibrational and rotational analyses of  $^3\Phi - ^3\Delta$  transition has been caried out. Molecular constants for the upper ( $^3\Phi$ ) and ground ( $^3\Delta$ ) states have been determined.

## INTRODUCTION

The emission spectrum of NbN was investigated by Dunn and Rao [1]. In the red region the system consisted of only three 0,0 sub-bands was observed, which were assigned as  $^3\Phi - ^3\Delta$  transition. The  $^3\Phi_3 - ^3\Delta_2$  sub-band has been rotationally analysed. The rotational analysis of the other two sub-bands was complicated by very large nuclear hyperfine splittings at low  $I$  values. The hyperfine structure analyses of 0,0 bands was carried out by Femenias and call.[2]. Green and call[3] have analysed the IR-spectrum of NbN isolated in an argon matrix, being determined the value  $G_{1/2}^{'''} = 1002.5 \text{ cm}^{-1}$ .

In this paper the  $^3\Phi - ^3\Delta$  system of NbN received by intracavity laser spectroscopy with the complete rotational and vibrational analyses is presented.

## EXPERIMENTAL

The electronic spectrum of NbN was taken in the 550-670 nm region. The experimental equipment was described earlier [4].

The quartz cell (30 cm pathlength and 2 cm diameter) with  $\text{NbCl}_5$  powder was placed in the cavity of a flash pumped dye-laser. The temperature of the cell was 250-300°C. The NbN moleculars were obtained by discharge through the  $\text{NbCl}_5$  and  $^{14}\text{N}_2$  ore  $^{15}\text{N}_2$  mixed vapours. The nitrogen pressure was 4-5 torr.

The spectrum was recorded at grating (75 lines/mm) spectrograph DFS-3. The  $^3\Phi - ^3\Delta$  bands fotopicture was taken in the 25-27 orders of the grating at dispersion of about  $1 \text{ \AA/mm}$ . The reference spectrum was provided by an iron hollow cathode lamp. The precision of the measurements for sharp unblended lines was  $0.02 \text{ cm}^{-1}$ .

#### VIBRATIONAL AND ROTATIONAL ANALYSIS

48 bands was obtained in the absorption spectrum of NbN. The wavenumbers of Q-heads are presented in Table 1. The  $^3\Phi - ^3\Delta$  system consists of the three sub-systems, separated by  $316.13$  and  $390.89 \text{ cm}^{-1}$  respectively (Fig 1). Every sub-bands degrades to the red and has two marked R and Q-heads. In the short wavelengths region two sub-systems analogous to the ones mentioned above were obtained. They were separated from the  $^3\Phi_4 - ^3\Delta_3$  subsystem by  $195.75$  and  $554.37 \text{ cm}^{-1}$  respectively. The assignment of these sub-systems to satellite components  $^3\Phi_3 - ^3\Delta_3$  and  $^3\Phi_2 - ^3\Delta_2$  based on isotopic effects.

The triplet splittings of the  $^3\Phi$  and  $^3\Delta$  states were measured (see Fig.2).

Three sequences with  $V=0, \pm 1$  were reviled, which allowed us to determine vibrational constants for lower and upper states. The least-squares fitting of

## T A B L E 1.

Deslanderes Table for  $^3P-^3\Delta$  System of NbN.

| $U'$ | $U''$ | 0         | 1        | 2        | 3        | 4        |
|------|-------|-----------|----------|----------|----------|----------|
|      |       | *16144.36 |          |          |          |          |
|      |       | 16543.06  | 15506.18 |          |          |          |
| 0    |       | 16060.20  | 15825.47 |          |          |          |
|      |       | 17057.72  |          |          |          |          |
|      |       | 17415.61  | 16379.81 |          |          |          |
|      |       | 17130.63  | 16096.84 |          |          |          |
|      |       | 17529.05  | 16493.00 | 15467.15 |          |          |
| 1    |       |           | 16806.32 | 15780.88 |          |          |
|      |       |           | 17003.25 |          |          |          |
|      |       |           | 17362.56 | 16333.09 |          |          |
|      |       |           | 17072.37 | 16049.86 |          |          |
|      |       |           | 17468.49 | 16442.58 | 15424.74 |          |
| 2    |       |           |          | 16754.93 | 15737.42 |          |
|      |       |           |          | 00000000 |          |          |
|      |       |           |          | 17319.17 |          |          |
|      |       |           |          | 17017.68 | 16002.09 |          |
| 3    |       |           |          | 17487.93 | 16392.07 | 15386.43 |
|      |       |           |          |          | 16701.85 | 15697.43 |
|      |       |           |          |          |          | 15954.40 |
| 4    |       |           |          |          | 17348.38 | 16342.60 |
|      |       |           |          |          |          | 17649.60 |
|      |       |           |          |          |          | 16648.92 |

TABLE 1. (continued).

| $\psi'$    | 5                            | 6                            | 7                            | 8                            |
|------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 5          | 15805.00                     |                              |                              |                              |
|            | 16290.32                     |                              |                              |                              |
| 6          |                              | 15856.29                     |                              |                              |
|            |                              | 16236.63                     |                              |                              |
| 7          |                              |                              | 15806.85                     |                              |
|            |                              |                              | 16187.62                     |                              |
| 8          |                              |                              |                              | 15756.49                     |
|            |                              |                              |                              | 16132.63                     |
| COMPONENTS | $^3\Phi - ^3\Delta$ ,<br>2 1 | $^3\Phi - ^3\Delta$ ,<br>3 2 | $^3\Phi - ^3\Delta$ ,<br>4 3 | $^3\Phi - ^3\Delta$ ,<br>2 2 |
|            | $^3\Phi - ^3\Delta$ ,<br>3 3 | RESPECTIVELY                 |                              |                              |

TABLE 2  
VIBRATIONAL CONSTANTS for the NbN MOLECULAR

|                   | $^3\Phi$        | $^3\Delta$       |
|-------------------|-----------------|------------------|
| $\omega_e$        | $994.2 \pm 1.0$ | $1043.9 \pm 1.0$ |
| $\omega_e \chi_e$ | $4.27 \pm 0.2$  | $4.18 \pm 0.2$   |

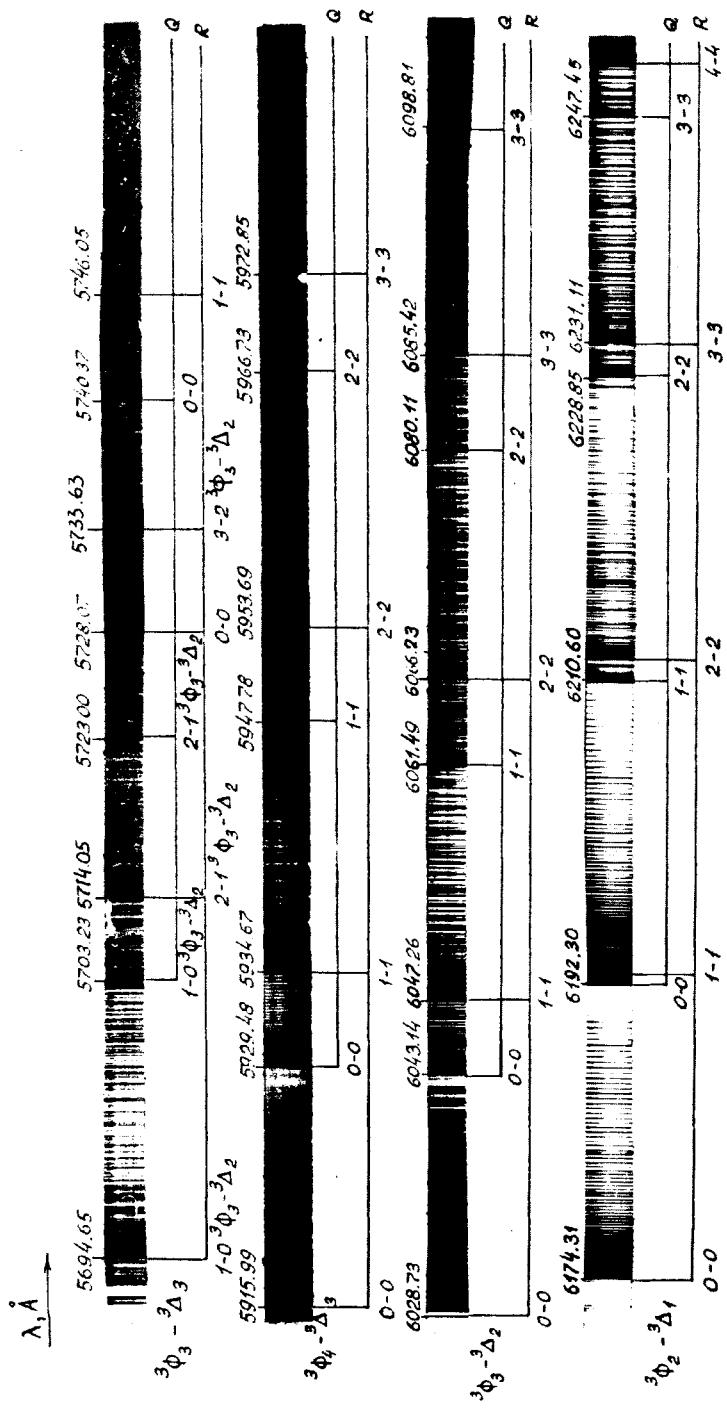



Fig. 1 A portion of the NbN electronic spectrum.

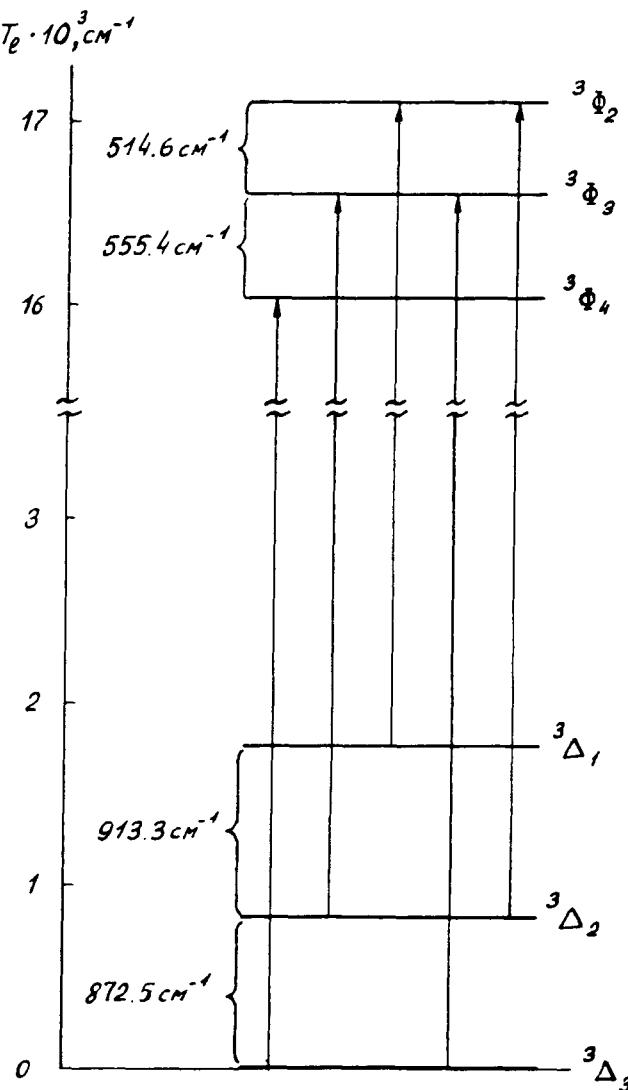



Fig. 2 Schematic energy diagram of the  $^3\Delta$  and  $^3\Phi$  states of NbN.

wavenumbers of Q-heads gives vibrational constants tabulated in Table 2.

The rotational structures of 0,0 bands in all sub-systems were perfectly resolved. Every band has strong Q and R-branchers as well as a weaker P-branch (see Fig 3).

We invoke the usual equations for triplet states:

$$\begin{aligned} F_1(I) &= B \left\{ I(I+1) - y_1 + 4I(I+1)^{-1/2} - \left( \frac{2}{3} \frac{y_2 - 2I(I+1)}{y_1 + 4I(I+1)} \right) - D(I-1/2)^4 \right. \\ F_2(I) &= B \left\{ I(I+1) + \left( \frac{4}{3} \frac{y_2 - 2I(I+1)}{y_1 + 4I(I+1)} \right) - D(I+1/2)^4 \right. \\ F_3(I) &= B \left\{ I(I+1) + y_1 + 4I(I+1)^{-1/2} - \left( \frac{2}{3} \frac{y_2 - 2I(I+1)}{y_1 + 4I(I+1)} \right) - D(I+3/2)^4 \right. \end{aligned} \quad (1)$$

where  $y_1 = {}^2Y(Y-4) + 4/3$  and  $y_2 = {}^2Y(Y-1) - 4/9$ .

As usual, from the observed branchers of band one can compute combination differences.

For the upper state:

$$\begin{aligned} \Delta_2 F'_{1,2,3}(I) &= F'_{1,2,3}(I+1) - F'_{1,2,3}(I) = R_{1,2,3}(I) - \\ &- P_{1,2,3}(I) \end{aligned} \quad (2)$$

and for the ground state:

$$\begin{aligned} \Delta_2 F''_{1,2,3}(I) &= F''_{1,2,3}(I+1) - F''_{1,2,3}(I) = R_{1,2,3}(I-1) - \\ &- P_{1,2,3}(I) \end{aligned} \quad (3)$$

Taking summations of the three substates, and substituting eq.(1) we have:

$$\begin{aligned} \Delta_2 F_1(I) + \Delta_2 F_2(I) + \Delta_2 F_3(I) &= B(12I+6) - D(24I^3 + 36I^2 + \\ &+ 90I + 39) \end{aligned} \quad (4)$$

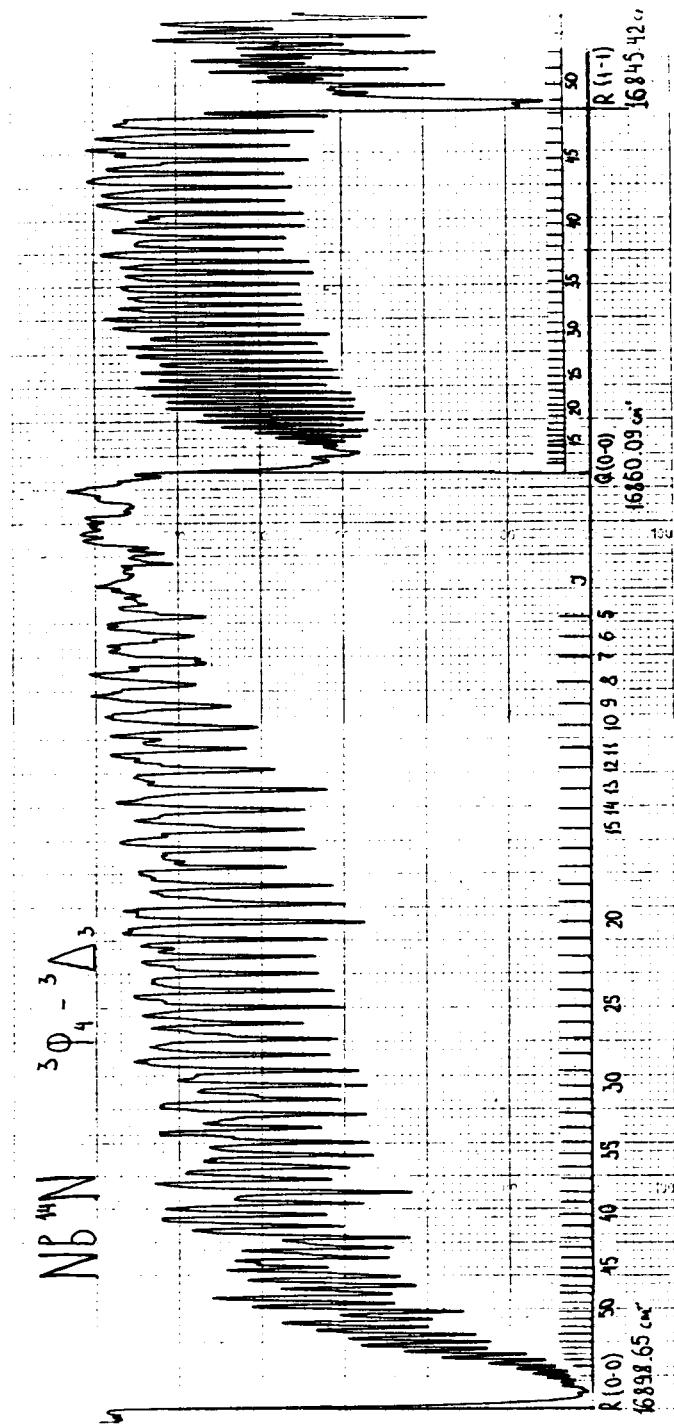



FIG. 3 Microdensitometer trace of the  $3P_4 - 3D_3$  system of  $Nb^{41}N$ .

The most probable values of  $B'_0$ ,  $D'_0$ ,  $B''_0$  and  $D''_0$  were derived for all observed  $I (=75)$  by least squares procedures. The results are presented in Table 3.

The rotational constants were invoked in the computation of the 0-0 band origin  $\nu_0$ :

$$\nu_0(I) = 1/6 [P_1(I) + R_1(I) + P_2(I) + R_2(I) + P_3(I) + R_3(I)] - B' - (B' - B'')I - (B' - B'')I^2 + (D' - D'')I^4 + 2(D' - D'')I^3 + 0.5(23D' - 11D'')I^2 + 0.5(21D' - 9D'')I + \left(\frac{1}{96}\right)(790D' - 166D'') \quad (5)$$

From the equations (1) differences  $F_3(I) - F_1(I)$  at  $I=0$  becomes:

$$F_3(0) - F_1(0) = 2B_0 y_1^{1/2} - 5D_0 \quad (6)$$

Invoking the spin splittings of Fig.2 and ignoring the term  $5D_0$ , which is small, we have:

$$y_1 = \left\{ [F_3(0) - F_1(0)] / 2B_0 \right\}^2, \quad (7)$$

that leads an estimate of triplet splitting constant  $Y$  from:

$$y_1 = \Lambda^2 Y(Y-4) + 4/3 \quad (8)$$

The resulting  $Y$ -values are included in Table 3.

It is known that observed bands splittings for many triplet transitions are unexpected. The additional terms taking into account spin-orbital and spin-spin interactions are necessary in the eq.(1), as was shown by Kovacs [5]. Knowing the actual splittings (Fig 2) we can thus reveal the discrepancy exhibited by indi-

TABLE 3  
MOLECULAR CONSTANTS of the NBN MOLECULE ( $\text{cm}^{-1}$ )

|                   | $^3\Phi$            | $^3\Delta$          |
|-------------------|---------------------|---------------------|
| B                 | $0.4941 \pm 0.0004$ | $0.4993 \pm 0.0003$ |
| $D \cdot 10^{-7}$ | $3.0 \pm 0.2$       | $3.1 \pm 0.1$       |
| Y                 | $358.94 \pm 0.02$   | $892.19 \pm 0.02$   |
| $\beta$           | $1.03 \pm 0.01$     | $-38.74 \pm 0.01$   |
| $\gamma$          | $-0.104 \pm 0.001$  |                     |
| $\nu_0$           |                     | $16516.11 \pm 0.05$ |

TABLE 4  
COMPARISON of CALCULATED SPIN SPLITTINGS with OBSERVED  
SPLITTINGS

| State      | $F_2(0)-F_1(0)$ ( $\text{cm}^{-1}$ ) |        | $F_3(0)-F_2(0)$ ( $\text{cm}^{-1}$ ) |        |
|------------|--------------------------------------|--------|--------------------------------------|--------|
|            | Cal.                                 | Obs.   | Cal.                                 | Obs.   |
| $^3\Phi$   | 529.41                               | 555.41 | 528.09                               | 514.64 |
| $^3\Delta$ | 889.59                               | 872.53 | 888.25                               | 913.36 |

vidual electronic states. The observed differences  $\Delta F_{2,1}$  and  $\Delta F_{3,2}$  and computed from eq.(1) for  $I=0$  are compared in the Table 4.

So it is necessary to compute spin-orbital and spin-spin corrections for the both triplet states. Following Kovacs, the true rotational terms were obtained from eq.(1) with the additional terms:

$$F_{1,t}(I) = F_1(I) - \beta/3 + \beta S \Delta, (I-1)^2 + \gamma (I+1/3)$$

$$F_{2,t}(I) = F_2(I) - \beta/3 + \beta S \Delta, I^2 + 1/3 \gamma$$

$$F_{3,t}(I) = F_3(I) - \beta/3 + \beta S \Delta, (I+1)^2 - \gamma (I+2/3)$$

Using equations and adoption that  $\gamma''$  for  $X^3\Delta$  state was extremely small [5], the values  $\gamma'$ ,  $\beta''$  and  $\beta'$  were found by least-squares fitting. The results are presented in Table 3.

#### REFERENCES

1. T.M.Dunn, K.M.Rao, *Nature* 1969, v. 222, p.266.
2. J.-L. Femenias, C.Athemour, T.M.Dunn, *J. Chem. Phys.*, 1975, v. 63, N 7, p. 2861.
3. D.W.Green, W.Korfmacher, D.M.Gruen, *J.Chem.Phys.*, 1973, v. 58, p.404.
4. P.I.Stepanov, E.N.Moskvitina, Yu.Ya.Kuzyakov, E.A.Sviridenkov, A.N.Savchenko, *Vestn.Mosk.Un-ta, ser."Khimia"*, 1983, v. 24, p.442.
5. Kovacs I., *J.Mol.Spectr.*, 1965, v.18, p.229.

Date Received: 01/30/86  
 Date Accepted: 03/03/86